Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27816, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38510028

RESUMO

Here, we present surface analysis and biocompatibility evaluation of novel composite material based on graphene oxide traded as Hastalex. First, the surface morphology and elemental analysis of the pristine material were examined by atomic force and scanning electron microscopies, and by energy-dispersive and X-ray photoelectron spectroscopies, respectively. The Hastalex surface was then modified by plasma (3 and 8 W with exposure times up to 240 s), the impact of which on the material surface wettability and morphology was further evaluated. In addition, the material aging was studied at room and elevated temperatures. Significant changes in surface roughness, morphology, and area were detected at the nanometer scale after plasma exposure. An increase in oxygen content due to the plasma exposure was observed both for 3 and 8 W. The plasma treatment had an outstanding effect on the cytocompatibility of Hastalex foil treated at both input powers of 3 and 8 W. The cell number of human MRC-5 fibroblasts on Hastalex foils exposed to plasma increased significantly compared to pristine Hastalex and even to tissue culture polystyrene. The plasma exposure also affected the fibroblasts' cell growth and shape.

2.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474025

RESUMO

We focused on polydimethylsiloxane (PDMS) as a substrate for replication, micropatterning, and construction of biologically active surfaces. The novelty of this study is based on the combination of the argon plasma exposure of a micropatterned PDMS scaffold, where the plasma served as a strong tool for subsequent grafting of collagen coatings and their application as cell growth scaffolds, where the standard was significantly exceeded. As part of the scaffold design, templates with a patterned microstructure of different dimensions (50 × 50, 50 × 20, and 30 × 30 µm2) were created by photolithography followed by pattern replication on a PDMS polymer substrate. Subsequently, the prepared microstructured PDMS replicas were coated with a type I collagen layer. The sample preparation was followed by the characterization of material surface properties using various analytical techniques, including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). To evaluate the biocompatibility of the produced samples, we conducted studies on the interactions between selected polymer replicas and micro- and nanostructures and mammalian cells. Specifically, we utilized mouse myoblasts (C2C12), and our results demonstrate that we achieved excellent cell alignment in conjunction with the development of a cytocompatible surface. Consequently, the outcomes of this research contribute to an enhanced comprehension of surface properties and interactions between structured polymers and mammalian cells. The use of periodic microstructures has the potential to advance the creation of novel materials and scaffolds in tissue engineering. These materials exhibit exceptional biocompatibility and possess the capacity to promote cell adhesion and growth.


Assuntos
Colágeno , Engenharia Tecidual , Camundongos , Animais , Colágeno/química , Adesão Celular , Propriedades de Superfície , Mioblastos , Dimetilpolisiloxanos/química , Mamíferos
3.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474083

RESUMO

Diamond-like carbon (DLC) layers are known for their high corrosion and wear resistance, low friction, and high biocompatibility. However, it is often necessary to dope DLC layers with additional chemical elements to strengthen their adhesion to the substrate. Ti-DLC layers (doped with 0.4, 2.1, 3.7, 6.6, and 12.8 at.% of Ti) were prepared by dual pulsed laser deposition, and pure DLC, glass, and polystyrene (PS) were used as controls. In vitro cell-material interactions were investigated with an emphasis on cell adhesion, proliferation, and osteogenic differentiation. We observed slightly increasing roughness and contact angle and decreasing surface free energy on Ti-DLC layers with increasing Ti content. Three-week biological experiments were performed using adipose tissue-derived stem cells (ADSCs) and bone marrow mesenchymal stem cells (bmMSCs) in vitro. The cell proliferation activity was similar or slightly higher on the Ti-doped materials than on glass and PS. Osteogenic cell differentiation on all materials was proved by collagen and osteocalcin production, ALP activity, and Ca deposition. The bmMSCs exhibited greater initial proliferation potential and an earlier onset of osteogenic differentiation than the ADSCs. The ADSCs showed a slightly higher formation of focal adhesions, higher metabolic activity, and Ca deposition with increasing Ti content.


Assuntos
Artroplastia de Substituição , Células-Tronco Mesenquimais , Titânio/química , Propriedades de Superfície , Carbono/química , Osteogênese , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo
4.
Polymers (Basel) ; 16(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38399886

RESUMO

Many bio-applicable materials, medical devices, and prosthetics combine both polymer and metal components to benefit from their complementary properties. This goal is normally achieved by their mechanical bonding or casting only. Here, we report an alternative easy method for the chemical grafting of a polymer on the surfaces of a metal or metal alloys using alkoxy amine salt as a coupling agent. The surface morphology of the created composites was studied by various microscopy methods, and their surface area and porosity were determined by adsorption/desorption nitrogen isotherms. The surface chemical composition was also examined by various spectroscopy techniques and electrokinetic analysis. The distribution of elements on the surface was determined, and the successful bonding of the metal/alloys on one side with the polymer on the other by alkoxy amine was confirmed. The composites show significantly increased hydrophilicity, reliable chemical stability of the bonding, even interaction with solvent for thirty cycles, and up to 95% less bacterial adhesion for the modified samples in comparison with pristine samples, i.e., characteristics that are promising for their application in the biomedical field, such as for implants, prosthetics, etc. All this uses universal, two-step procedures with minimal use of energy and the possibility of production on a mass scale.

5.
Heliyon ; 9(11): e21566, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027944

RESUMO

The design of functional micro or nanostructured surfaces is undergoing extensive research for their intriguing multifunctional properties and for large variety of potential applications in biomedical field (tissue engineering or cell adhesion), electronics, optics or microfluidics. Such nanosized topographies can be easily fabricated by various lithography techniques and can be also further reinforced by synergic effect by combining aforementioned structures along materials with already outstanding antibacterial properties. In this work we fabricated novel micro/nanostructured substrates using soft lithography replication method and subsequent thermal nanoimprint lithography method, creating nanostructured films based on poly (l-lactic acid) (PLLA) fortified by thin silver films deposited by PVD. Main nanoscale patterns were fabricated by replicating surface patterns of optical discs (CDs and DVDs), which proved to be easy, fast and inexpensive method for creating relatively large area patterned surfaces. Their antimicrobial activity was examined in vitro against the bacteria Escherichia coli and Staphylococcus epidermidis strains. The results demonstrated that nanopatterned films actually improved the conditions for bacterial growth compared to pristine PLLA films, the novelty is based on formation of Ag nanoparticles on the surface/and in bulk, while silver nanoparticle enhanced and nanopatterned films exhibited excellent antibacterial activity against both bacterial strains, with circa 80 % efficacy in 4 h and complete bactericidal effect in span of 24 h.

6.
Materials (Basel) ; 16(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37374464

RESUMO

This study is focused on polytetrafluoroethylene (PTFE) porous nanotextile and its modification with thin, silver sputtered nanolayers, combined with a subsequent modification with an excimer laser. The KrF excimer laser was set to single-shot pulse mode. Subsequently, the physico chemical properties, morphology, surface chemistry, and wettability were determined. Minor effects of the excimer laser on the pristine PTFE substrate were described, but significant changes were observed after the application of the excimer laser to the polytetrafluoroethylene with sputtered silver, where the formation of a silver nanoparticles/PTFE/Ag composite was described, with a wettability similar to that of a superhydrophobic surface. Both scanning electron microscopy and atomic force microscopy revealed the formation of superposed globular structures on the polytetrafluoroethylene lamellar primary structure, which was also confirmed using energy dispersive spectroscopy. The combined changes in the surface morphology, chemistry, and thus wettability induced a significant change in the PTFE's antibacterial properties. Samples coated with silver and further treated with the excimer laser 150 mJ/cm2 inhibited 100% of the bacterial strain E. coli. The motivation of this study was to find a material with flexible and elastic properties and a hydrophobic character, with antibacterial properties that could be enhanced with silver nanoparticles, but hydrophobic properties that would be maintained. These properties can be used in different types of applications, mainly in tissue engineering and the medicinal industry, where water-repellent materials may play important roles. This synergy was achieved via the technique we proposed, and even when the Ag nanostructures were prepared, the high hydrophobicity of the system Ag-polytetrafluorethylene was maintained.

7.
Nanomaterials (Basel) ; 13(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770517

RESUMO

Here, we aimed to achieve exposure of a nanodiamond layer to a high-energy excimer laser. The treatment was realized in high-vacuum conditions. The carbon, in the form of nanodiamonds (NDs), underwent high-temperature changes. The induced changes in carbon form were studied with Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction (XRD) and we searched for the Q-carbon phase in the prepared structure. Surface morphology changes were detected by atomic force microscopy (AFM) and scanning electron microscopy (SEM). NDs were exposed to different laser energy values, from 1600 to 3000 mJ cm-2. Using the AFM and SEM methods, we found that the NDs layer was disrupted with increasing beam energy, to create a fibrous structure resembling Q-carbon fibers. Layered micro-/nano-spheres, representing the role of diamonds, were created at the junction of the fibers. A Q-carbon structure (fibers) consisting of 80% sp3 hybridization was prepared by melting and quenching the nanodiamond film. Higher energy values of the laser beam (2000 and 3000 mJ cm-2), in addition to oxygen bonds, also induced carbide bonds characteristic of Q-carbon. Raman spectroscopy confirmed the presence of a diamond (sp3) phase and a low-intensity graphitic (G) peak occurring in the Q-carbon form samples.

8.
Materials (Basel) ; 16(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36676507

RESUMO

In this review, we present a comprehensive summary of the formation of honeycomb microstructures and their applications, which include tissue engineering, antibacterial materials, replication processes or sensors. The history of the honeycomb pattern, the first experiments, which mostly involved the breath figure procedure and the improved phase separation, the most recent approach to honeycomb pattern formation, are described in detail. Subsequent surface modifications of the pattern, which involve physical and chemical modifications and further enhancement of the surface properties, are also introduced. Different aspects influencing the polymer formation, such as the substrate influence, a particular polymer or solvent, which may significantly contribute to pattern formation, and thus influence the target structural properties, are also discussed.

9.
Materials (Basel) ; 15(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806736

RESUMO

The main aim of this study was to describe the treatment of carbon sheet with a high-energy excimer laser. The excimer modification changed the surface chemistry and morphology of carbon. The appearance of specific carbon forms and modifications have been detected due to exposure to laser beam fluencies up to 8 J cm-2. High fluence optics was used for dramatic changes in the carbon layer with the possibility of Q-carbon formation; a specific amorphous carbon phase was detected with Raman spectroscopy. The changes in morphology were determined with atomic force microscopy and confirmed with scanning electron microscopy, where the partial formation of the Q-carbon phase was detected. Energy dispersive spectroscopy (EDS) was applied for a detailed study of surface chemistry. The particular shift of functional groups induced on laser-treated areas was determined by X-ray photoelectron spectroscopy. For the first time, high-dose laser exposure successfully induced a specific amorphous carbon phase.

10.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563068

RESUMO

Here, we report on the nanopatterning of different aromatic polymer substrates achieved by KrF excimer laser treatment. The conditions for the construction of the laser-induced periodic surface structures, the so-called LIPSS pattern, were established by optimized laser fluence and a number of pulses. The polymer substrates were polyethylene naphthalate (PEN), polyethersulfone (PES), and polystyrene (PS), which were chosen since they are thermally, chemically, and mechanically resistant polymers with high absorption coefficients at the excimer laser wavelength. The surface morphology of the treated substrates was investigated by atomic force microscopy and scanning electron microscopy, and the roughness and effective surface area on the modified samples were determined. Elemental concentration was characterized by energy-dispersive (EDX) analysis, surface chemistry was determined with X-ray photoelectron spectroscopy (XPS). The samples with the formation of LIPSS induced by 10 mJ·cm-2 with 1000, 3000, and 6000 pulses were used for subsequent in vitro cytocompatibility tests using human cells from osteosarcoma (U-2 OS). The LIPSS pattern and its ability of significant cell guidance were confirmed for some of the studied samples. Cell morphology, adhesion, and proliferation were evaluated. The results strongly contribute to the development of novel applications using nanopatterned polymers, e.g., in tissue engineering, cell analysis or in combination with metallization for sensor construction.


Assuntos
Nanoestruturas , Animais , Comunicação Celular , Humanos , Lasers , Mamíferos , Nanoestruturas/química , Polímeros/química , Propriedades de Superfície
11.
Polymers (Basel) ; 13(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34771220

RESUMO

In this study, we present a simple approach for developing a biocompatible polymer scaffold with a honeycomb-like micropattern. We aimed to combine a plasma treatment of fluorinated ethylene propylene (FEP) substrate with an improved phase separation technique. The plasma exposure served for modification of the polymer surface properties, such as roughness, surface chemistry, and wettability. The treated FEP substrate was applied for the growth of a honeycomb-like pattern from a solution of polymethyl methacrylate (PMMA). The properties of the pattern were strongly dependent on the conditions of plasma exposure of the FEP substrate. The physico-chemical properties of the prepared pattern, such as changes in wettability, aging, morphology, and surface chemistry, were determined. Further, we have examined the cellular response of human osteoblasts (U-2 OS) on the modified substrates. The micropattern prepared with a selected combination of surface activation and amount of PMMA for honeycomb construction showed a positive effect on U-2 OS cell adhesion and proliferation. Samples with higher PMMA content (3 and 4 g) formed more periodic hexagonal structures on the surface compared to its lower amount (1 and 2 g), which led to a significant increase in the pattern cytocompatibility compared to pristine or plasma-treated FEP.

12.
Nanomaterials (Basel) ; 11(9)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34578684

RESUMO

The versatility of the arrangement of C atoms with the formation of different allotropes and phases has led to the discovery of several new structures with unique properties. Carbon nanomaterials are currently very attractive nanomaterials due to their unique physical, chemical, and biological properties. One of these is the development of superconductivity, for example, in graphite intercalated superconductors, single-walled carbon nanotubes, B-doped diamond, etc. Not only various forms of carbon materials but also carbon-related materials have aroused extraordinary theoretical and experimental interest. Hybrid carbon materials are good candidates for high current densities at low applied electric fields due to their negative electron affinity. The right combination of two different nanostructures, CNF or carbon nanotubes and nanoparticles, has led to some very interesting sensors with applications in electrochemical biosensors, biomolecules, and pharmaceutical compounds. Carbon materials have a number of unique properties. In order to increase their potential application and applicability in different industries and under different conditions, they are often combined with other types of material (most often polymers or metals). The resulting composite materials have significantly improved properties.

13.
Pharmaceutics ; 13(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199533

RESUMO

In this study, we have aimed at the preparation and characterization of poly-l-lactic acid (PLLA) composites with antibacterial properties. Thin bilayers of titanium and gold of various thickness ratios were deposited on PLLA by a cathode sputtering method; selected samples were subsequently thermally treated. The surface morphology of the prepared composites was studied by atomic force, scanning electron, and laser confocal microscopy. The chemical properties of the composites were determined by X-ray photoelectron and energy-dispersive X-ray spectroscopy in combination with contact angle and zeta potential analyses. The antibacterial properties of selected samples were examined against a Gram-negative bacterial strain of E. coli. We have found that a certain combination of Au and Ti nanolayers in combination with heat treatment leads to the formation of a unique wrinkled pattern. Moreover, we have developed a simple technique by which a large-scale sample modification can be easily produced. The dimensions of wrinkles can be tailored by the sequence and thickness of the deposited metals. A selected combination of gold, titanium, and heat treatment led to the formation of a nanowrinkled pattern with excellent antibacterial properties.

14.
Nanomaterials (Basel) ; 11(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071711

RESUMO

The subjects of this work were the enhancement and determination of the stability and other properties of gold nanoparticles (AuNPs) in an aqueous solution, gold nanoparticle immobilization, and further surface grafting on polyethylene naphthalate (PEN). Gold nanoparticles in PEG with a subsequent water solution addition were prepared using cathode sputtering; for the subsequent surface activation, two different solutions were used: (i) sodium citrate dihydrate (TCD) and (ii) N-acetyl-L-cysteine (NALC). The aim of this work was to study the effect of the concentration of these solutions on AuNPs stability, and further, the effect of the concentration of gold nanoparticles and their morphology, and to describe the aging process of solutions, namely, the optical properties of samples over 28 days. Stabilized AuNPs were prepared in an N-acetyl-L-cysteine (NALC) system and subsequently immobilized with NALC. The surface chemistry modification of AuNPs was confirmed using HRTEM/EDS. Gold nanoparticles were successfully immobilized with NALC. Grafting of the modified PEN from a solution of colloidal gold stabilized in the PEG-H2O-NALC system led to the polymer surface functionalization.

15.
Nanomaterials (Basel) ; 11(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450953

RESUMO

This article is focused on the evaluation of surface properties of polytetrafluoroethylene (PTFE) nanotextile and a tetrafluoroethylene-perfluoro(alkoxy vinyl ether) (PFA) film and their surface activation with argon plasma treatment followed with silver nanoclusters deposition. Samples were subjected to plasma modification for a different time exposure, silver deposition for different time periods, or their combination. As an alternative approach, the foils were coated with poly-L-lactic acid (PLLA) and silver. The following methods were used to study the surface properties of the polymers: goniometry, atomic force microscopy, and X-ray photoelectron microscopy. By combining the aforementioned methods for material surface modification, substrates with antibacterial properties eliminating the growth of Gram-positive and Gram-negative bacteria were prepared. Studies of antimicrobial activity showed that PTFE plasma-modified samples coated with PLLA and deposited with a thin layer of Ag had a strong antimicrobial effect, which was also observed for the PFA material against the bacterial strain of S. aureus. Significant antibacterial effect against S. aureus, Proteus sp. and E. coli has been demonstrated on PTFE nanotextile plasma-treated for 240 s, coated with PLLA, and subsequently sputtered with thin Ag layer.

16.
Materials (Basel) ; 13(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32824068

RESUMO

Homogeneous polystyrene foils doped with different concentrations of acetylsalicylic acid were prepared by the solvent casting method. The surface morphology and surface chemistry of as-prepared foils were characterized in detail. Excimer laser (krypton fluoride, a wavelength of 248 nm) was used for surface nanopatterning of doped polystyrene foils. Certain combinations of laser fluence and number of laser pulses led to formation of laser-induced periodic surface structures (LIPSS) on the exposed surface. Formation of the pattern was affected by the presence of a dopant in the polystyrene structure. Significant differences in surface chemistry and morphology of laser-treated foils compared to both pristine and doped polystyrene were detected. The pattern width and height were both affected by selection of input excimer exposure conditions, and the amount of 6000 pulses was determined as optimal. The possibility of nanostructuring of a honeycomb-like pattern doped with acetylsalicylic acid was also demonstrated. Selected nanostructured surfaces were used for study the antibacterial properties for a model bacteria strain of S. aureus. The combination of altered surface chemistry and morphology of polystyrene was confirmed to have an excellent antibacterial properties.

17.
Materials (Basel) ; 13(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861259

RESUMO

The versatile family of nanoparticles is considered to have a huge impact on the different fields of materials research, mostly nanoelectronics, catalytic chemistry and in study of cytocompatibility, targeted drug delivery and tissue engineering. Different approaches for nanoparticle preparation have been developed, not only based on "bottom up" and "top down" techniques, but also several procedures of effective nanoparticle modifications have been successfully used. This paper is focused on different techniques of nanoparticles' preparation, with primary focus on metal nanoparticles. Dispergation methods such as laser ablation and vacuum sputtering are introduced. Condensation methods such as reduction with sodium citrate, the Brust-Schiffrin method and approaches based on ultraviolet light or biosynthesis of silver and gold are also discussed. Basic properties of colloidal solutions are described. Also a historical overview of nanoparticles are briefly introduced together with short introduction to specific properties of nanoparticles and their solutions.

18.
Mater Sci Eng C Mater Biol Appl ; 100: 117-128, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948046

RESUMO

Carbon-based materials have emerged as promising candidates for a wide variety of biomedical applications, including tissue engineering. We have developed a simple but unique technique for patterning carbon-based substrates in order to control cell adhesion, growth and phenotypic maturation. Carbon films were deposited on PLLA foils from distances of 3 to 7 cm. Subsequent heat-treatment (60 °C, 1 h) created lamellar structures with dimensions decreasing from micro- to nanoscale with increasing deposition distance. All carbon films improved the spreading and proliferation of human osteoblast-like MG 63 cells, and promoted the alignment of these cells along the lamellar structures. Similar alignment was observed in human osteoblast-like Saos-2 cells and in human dermal fibroblasts. Type I collagen fibers produced by Saos-2 cells and fibroblasts were also oriented along the lamellar structures. These structures increased the activity of alkaline phosphatase in Saos-2 cells. Carbon coatings also supported adhesion and growth of vascular endothelial and smooth muscle cells, particularly flatter non-heated carbon films. On these films, the continuity of the endothelial cell layer was better than on heat-treated lamellar surfaces. Heat-treated carbon-coated PLLA is therefore more suitable for bone and skin tissue engineering, while carbon-coated PLLA without heating is more appropriate for vascular tissue engineering.


Assuntos
Carbono/química , Materiais Revestidos Biocompatíveis/química , Poliésteres/química , Engenharia Tecidual , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Materiais Revestidos Biocompatíveis/farmacologia , Colágeno Tipo I/metabolismo , Temperatura Alta , Humanos , Teste de Materiais , Propriedades de Superfície
19.
Biotechnol Adv ; 36(3): 839-855, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29258845

RESUMO

Modification of polymer substrates can essentially change the properties of material and thereby it allows their usage in attractive fields of material research. Laser treatment can be successfully applied for change in physico-chemical surface properties and/or for selective change of surface morphology with pattern construction. Three major applications of laser induced structures were described, cytocompatibility control, application as anti-bacterial substrate and plasmonic-based detection system. The construction of a second generation antibacterials using the synergic effect of either nanopatterning of polymers by application of a laser or noble metals deposition and consequent modification of nanostructures was presented.


Assuntos
Técnicas de Cultura de Células/métodos , Nanoestruturas/química , Nanotecnologia/métodos , Polímeros/química , Análise Espectral Raman/métodos , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Técnicas Biossensoriais/instrumentação , Adesão Celular , Técnicas de Cultura de Células/instrumentação , DNA/análise , Lasers , Lipídeos/análise , Neoplasias/patologia , Análise Espectral Raman/instrumentação , Propriedades de Superfície , Engenharia Tecidual/métodos
20.
Mater Sci Eng C Mater Biol Appl ; 60: 394-401, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26706545

RESUMO

Five types of amide-amine Carbon Nano-Particles (CNPs) were prepared by functionalization of CNPs and characterized by several analytical methods. The successful grafting of amines on CNPs was verified by X-ray photoelectron spectroscopy (XPS), organic elemental analysis and electrokinetic analysis. The size and morphology of CNPs were determined from transmission electron microscopy. The surface area and porosity of CNPs were examined by adsorption and desorption isotherms. Differential scanning calorimetry was used to investigate thermal stability of CNPs. The amount of bonded amine depends on its dimensionality arrangement. Surface area and pore volumes of CNPs decrease several times after individual amino-compound grafting. Selected types of functionalized CNPs were grafted onto a plasma activated surface of HDPE. The successful grafting of CNPs on the polymer surface was verified by XPS. Wettability was determined by contact angle measurements. Surface morphology and roughness were studied by atomic force microscopy. A dramatic decrease of contact angle and surface morphology was observed on CNP grafted polymer surface. Cytocompatibility of modified surfaces was studied in vitro, by determination of adhesion, proliferation and viability of vascular smooth muscle cells (VSMCs). Grafting of CNPs onto the polymer surface has a positive effect on the adhesion, proliferation and viability of VSMCs.


Assuntos
Aminas/química , Carbono/química , Nanopartículas/química , Polietileno/química , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Nanopartículas/efeitos adversos , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...